Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e22336, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034697

RESUMO

The Internet-of-Things (IoT)-based healthcare systems are comprised of a large number of networked medical devices, wearables, and sensors that collect and transmit data to improve patient care. However, the enormous number of networked devices renders these systems vulnerable to assaults. To address these challenges, researchers advocated reducing execution time, leveraging cryptographic protocols to improve security and avoid assaults, and utilizing energy-efficient algorithms to minimize energy consumption during computation. Nonetheless, these systems still struggle with long execution times, assaults, excessive energy usage, and inadequate security. We present a novel whale-based attribute encryption scheme (WbAES) that empowers the transmitter and receiver to encrypt and decrypt data using asymmetric master key encryption. The proposed WbAES employs attribute-based encryption (ABE) using whale optimization algorithm behaviour, which transforms plain data to ciphertexts and adjusts the whale fitness to generate a suitable master public and secret key, ensuring security against unauthorized access and manipulation. The proposed WbAES is evaluated using patient health record (PHR) datasets collected by IoT-based sensors, and various attack scenarios are established using Python libraries to validate the suggested framework. The simulation outcomes of the proposed system are compared to cutting-edge security algorithms and achieved finest performance in terms of reduced 11 s of execution time for 20 sensors, 0.121 mJ of energy consumption, 850 Kbps of throughput, 99.85 % of accuracy, and 0.19 ms of computational cost.

2.
Sensors (Basel) ; 23(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36991642

RESUMO

Lung cancer is a high-risk disease that causes mortality worldwide; nevertheless, lung nodules are the main manifestation that can help to diagnose lung cancer at an early stage, lowering the workload of radiologists and boosting the rate of diagnosis. Artificial intelligence-based neural networks are promising technologies for automatically detecting lung nodules employing patient monitoring data acquired from sensor technology through an Internet-of-Things (IoT)-based patient monitoring system. However, the standard neural networks rely on manually acquired features, which reduces the effectiveness of detection. In this paper, we provide a novel IoT-enabled healthcare monitoring platform and an improved grey-wolf optimization (IGWO)-based deep convulution neural network (DCNN) model for lung cancer detection. The Tasmanian Devil Optimization (TDO) algorithm is utilized to select the most pertinent features for diagnosing lung nodules, and the convergence rate of the standard grey wolf optimization (GWO) algorithm is modified, resulting in an improved GWO algorithm. Consequently, an IGWO-based DCNN is trained on the optimal features obtained from the IoT platform, and the findings are saved in the cloud for the doctor's judgment. The model is built on an Android platform with DCNN-enabled Python libraries, and the findings are evaluated against cutting-edge lung cancer detection models.


Assuntos
Inteligência Artificial , Neoplasias Pulmonares , Humanos , Detecção Precoce de Câncer , Redes Neurais de Computação , Algoritmos , Neoplasias Pulmonares/diagnóstico , Atenção à Saúde
3.
Healthcare (Basel) ; 11(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36833114

RESUMO

IoT-enabled healthcare apps are providing significant value to society by offering cost-effective patient monitoring solutions in IoT-enabled buildings. However, with a large number of users and sensitive personal information readily available in today's fast-paced, internet, and cloud-based environment, the security of these healthcare systems must be a top priority. The idea of safely storing a patient's health data in an electronic format raises issues regarding patient data privacy and security. Furthermore, with traditional classifiers, processing large amounts of data is a difficult challenge. Several computational intelligence approaches are useful for effectively categorizing massive quantities of data for this goal. For many of these reasons, a novel healthcare monitoring system that tracks disease processes and forecasts diseases based on the available data obtained from patients in distant communities is proposed in this study. The proposed framework consists of three major stages, namely data collection, secured storage, and disease detection. The data are collected using IoT sensor devices. After that, the homomorphic encryption (HE) model is used for secured data storage. Finally, the disease detection framework is designed with the help of Centered Convolutional Restricted Boltzmann Machines-based whale optimization (CCRBM-WO) algorithm. The experiment is conducted on a Python-based cloud tool. The proposed system outperforms current e-healthcare solutions, according to the findings of the experiments. The accuracy, precision, F1-measure, and recall of our suggested technique are 96.87%, 97.45%, 97.78%, and 98.57%, respectively, according to the proposed method.

4.
Life (Basel) ; 13(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36676091

RESUMO

BACKGROUND: Curcumin has been widely used to treat a variety of diseases and disorders since ancient times, most notably for the purpose of healing wounds. Despite the large number of available reviews on this topic, a bibliometric tool-based meta-analysis is missing in the literature. Scope and approach: To evaluate the influence and significance of the countries, journals, organizations and authors that have contributed the most to this topic, the popular bibliometric markers, including article count, citation count, and Hirsch index (H-index), are taken into account. Their collaborative networks and keyword co-occurrence along with the trend analysis are also sketched out using the VOSviewer software. To the best of our knowledge, this is the first bibliometric review on the topic and hence it is envisaged that it will attract researchers to explore future research dimensions in the related field. KEY FINDINGS AND CONCLUSIONS: India provided the most articles, making up more than 27.49 percent of the entire corpus. The International Journal of Biological Macromolecules published the most articles (44), and it also received the most citations (2012). The Journal of Ethnopharmacology (28 articles) and Current Pharmaceutical Design (20 articles) were the next most prolific journals with 1231 and 812 citations, respectively. The results indicate a significant increase in both research and publications on the wound-healing properties of curcumin. Recent studies have concentrated on creating novel medicine-delivery systems that use nano-curcumin to boost the effect of the curcumin molecule in therapeutic targeting. It has also been observed that genetic engineering and biotechnology have recently been employed to address the commercial implications of curcumin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...